工学基礎・数学ミニマム テスト 3

次の空欄(番号)に当てはまるものを各々の選択肢から選びなさい.

$$(1) \lim_{h \to 0} \frac{e^h - 1}{h} = \boxed{\mathbf{1}}, \qquad \lim_{h \to 0} \frac{a^h - 1}{h} = \boxed{\mathbf{2}} \ (ただし, a は正の定数とする)$$

(選択肢) ⑩ 0 ① 1 ② ∞ ③ $-\infty$ ④ e ⑤ $\frac{1}{e}$ ⑥ a ⑦ $\log a$ ⑧ $\frac{1}{a}$ ⑨ $\frac{1}{\log a}$

(2) $y=rac{1}{5}x^5-rac{1}{3}x^3$ のグラフは 3. このグラフが x 軸と交わる点は 4 個あり、この関数が極大となる点は 5 個、変曲点は 6 個ある.

(3) x が 0 に近いとき、 $\sin x$ の 1 次近似式は $\boxed{7}$ 、 $\cos x$ の 2 次近似式は $\boxed{8}$ であることを使うと、 $\sin x(1-\cos x)$ の 3 次近似式は $\boxed{9}$ となる.

(選択肢) ① x ① 1+x ② -x ③ $1-x^2$ ④ $1+\frac{1}{2}x^2$ ⑤ $1-\frac{1}{2}x^2$ ⑥ $\frac{1}{2}x^2+\frac{1}{2}x^3$ ⑦ $-x^3$ ⑧ $-\frac{1}{2}x^3$

(4) r の 1 変数関数 z=z(r) において, r が x と y の関数 r=r(x,y) であるとき, z は x と y の 2 変数関数 z=z(r(x,y)) となる. このとき, 合成関数の微分法により $\frac{\partial z}{\partial x}=oxed{10}$ である. 特に $r=\sqrt{x^2+y^2}$ のとき, $\frac{\partial z}{\partial x}=oxed{11}$ となる.

(選択肢) ① $\frac{\partial z}{\partial r} \frac{\partial r}{\partial x}$ ① $\frac{dz}{dr} \frac{dr}{dx}$ ② $\frac{\partial z}{\partial r} \frac{dr}{dx}$ ③ $\frac{dz}{dr} \frac{\partial r}{\partial x}$ ④ $\frac{dz}{dr} \frac{1}{2r}$ ⑤ $\frac{dz}{dr} \frac{2x}{r}$ ⑥ $\frac{dz}{dr} \frac{x}{r}$ ⑦ $\frac{\partial z}{\partial r} \frac{x}{r}$ ⑧ $\frac{\partial z}{\partial r} \frac{2x}{r}$ ⑨ $\frac{\partial z}{\partial r} \frac{1}{2r}$

- (5) $I=\int \frac{1}{\sqrt{x}(1+\sqrt{x})}dx$ を計算する. $\sqrt{x}=t$ とおくと, $I=\int$ 12 dt であるから, I= 13 + C (C は積分定数)となる.
- (選択肢) ① $\frac{1}{t(1+t)}$ ① $\frac{2}{t(1+t)}$ ② $\frac{2}{1+t}$ ③ $\frac{2t}{1+t}$ ④ $\frac{1}{1+t}$
- (5) $\log(1+\sqrt{x})$ (6) $\log\frac{\sqrt{x}}{1+\sqrt{x}}$ (7) $2\log\frac{\sqrt{x}}{1+\sqrt{x}}$ (8) $2\log(1+\sqrt{x})$
- (9) $2\sqrt{x} 2\log(1+\sqrt{x})$
- (6) 広義積分 $\int_0^1 \log x dx$ は定義より $\fbox{14}$ の意味であるから、極限を計算すると $\fbox{15}$ となる.
- (選択肢) ① $\lim_{\varepsilon \to +0} \int_{\varepsilon}^{1} \log x dx$ ① $\lim_{\varepsilon \to +0} \int_{1-\varepsilon}^{1+\varepsilon} \log x dx$ ② $\lim_{\varepsilon \to -\infty} \int_{\varepsilon}^{1} \log x dx$
- (7) 二重積分 $\iint_D rac{1}{x^2+y^2} dx dy \; (D=\{1 \le x^2+y^2 \le 4\})$ を計算する. 直交座標 (x,y) から極座標 (r,θ) への変換 $x=r\cos\theta, \, y=r\sin\theta$ を行うと、ヤコビアンは $\fbox{16}$ となるので、この二重積分を累次積分に書き換えると $\fbox{17}$ となる.
- (選択肢) ① $r^2 \sin \theta$ ① 1 ② r ③ $r \sin \theta$ ④ $\int_1^4 \left(\int_0^{2\pi} \frac{1}{r} d\theta \right) dr$
- $\int_{1}^{2} \left(\int_{0}^{2\pi} \frac{1}{r} d\theta \right) dr \quad \text{(6)} \quad \int_{1}^{2} \left(\int_{0}^{2\pi} \frac{\sin \theta}{r} d\theta \right) dr \quad \text{(7)} \quad \int_{1}^{2} \left(\int_{0}^{2\pi} \sin \theta d\theta \right) dr$
- (8) $z=rac{1}{2}+rac{\sqrt{3}}{2}i$ とするとき, $|z|=oxed{18}$ である. また, $rac{1}{z}=oxed{19}$ となり, これを極形式で表すと $oxed{20}$ となる.
- (選択肢) ⑩ $\frac{1}{2}$ ⑪ 1 ② 2 ③ $2+\sqrt{3}i$ ④ $\frac{1}{2}-\frac{\sqrt{3}}{2}i$ ⑤ $1-\sqrt{3}i$
- (6) $\cos \frac{4}{3}\pi + i \sin \frac{4}{3}\pi$ (7) $2\left(\cos \frac{4}{3}\pi + i \sin \frac{4}{3}\pi\right)$ (8) $\cos \frac{5}{3}\pi + i \sin \frac{5}{3}\pi$
- $9 \ 2\left(\cos\frac{5}{3}\pi + i\sin\frac{5}{3}\pi\right)$

(9) 2 行 3 列の行列 $A=\begin{bmatrix}1&-1&2\\1&3&-1\end{bmatrix}$ と 3 行 2 列の行列 $B=\begin{bmatrix}4&3\\1&2\\1&0\end{bmatrix}$ に対して,それらの積 AB は 2 行 $\boxed{21}$ 列の行列となり,その (2,1) 成分は $\boxed{22}$

(選択肢) ⑥ 0 ① 1 ② 2 ③ 3 ④ 4 ⑤ 5 ⑥ 6 ⑦ 7 ⑧ -1 ⑨ -2

(10) 行列 $A=\begin{bmatrix}1&0&2\\0&1&-2\\1&2&3\end{bmatrix}$ に対して,行列式 |A| の値は 23 であり,逆行列 A^{-1} の (1,2) 成分は 24 となる.

(選択肢) @ 0 ① 1 ② 2 ③ 3 ④ 4 ⑤ 5 ⑥ -1 ⑦ -2 ⑧ -3 ⑨ -4

(11) 行列 $A=\begin{bmatrix} -3&2&1\\ -1&0&1\\ -1&1&-1 \end{bmatrix}$ の固有値を計算する. I を単位行列とするとき、固有方程式 $|\lambda I-A|=0$ を解くと、A の固有値は -2 と26 であり,-2 に対する固有ベクトルは27 の定数倍で表される.

(選択肢) ⑥ 0 ① 1 2 2 ③ -1 ④ -2

である.