工学基礎・数学ミニマム テスト 5

次の空欄(番号)に当てはまるものを各々の選択肢から選びなさい.

- (1) $e^{\frac{1}{3}\log 8} = 1$, $\lim_{x \to \pi} \frac{\sin x}{\pi x} = 2$. ただし、対数は自然対数とする.
- (選択肢) _ _ _ 0 _ _ 0 _ 1 _ 1 _ _ 2 _ 2 _ _ 3 _ 3 _ _ 4 _ -1 _ _ 5 _ -2 _ _ 6 _ -3 _ _ 7 _ e _ _ 8 _ + ∞ _ _ _ _ 9 _ _ $-\infty$
- (2) x の関数 $y=\arcsin x$ を微分すると y'=3 である. x と y の関数 $z=\arcsin \frac{x^2}{y^2}$ を偏微分すると, $z_x=4$, $z_y=5$ である.
- (選択肢) ⑥ $\frac{-1}{\sqrt{1-x^2}}$ ① $\frac{1}{\sqrt{1-x^2}}$ ② $\frac{1}{1+x^2}$ ③ $\frac{-2x}{\sqrt{y^4-x^4}}$ ④ $\frac{2x}{\sqrt{y^4-x^4}}$ ⑤ $\frac{2xy^2}{y^4+x^4}$ ⑥ $\frac{2x^2}{y\sqrt{y^4-x^4}}$ ⑦ $\frac{-2x^2}{y\sqrt{y^4-x^4}}$ ⑧ $\frac{-2x^2y^2}{y^4+x^4}$
- (3) 高さが x, 底面の半径が y の円柱の体積を z=f(x,y) とし,2 変数関数 z=f(x,y) の点 $(2,1,2\pi)$ での 1 次化 (接平面) を考える。y=1 としたときの x の関数 z=f(x,1) の x=2 の近くでの 1 次近似は $\boxed{\mathbf{6}}$, x=2 としたときの y の 関数 z=f(2,y) の y=1 の近くでの 1 次近似は $\boxed{\mathbf{7}}$ である。従って,2 変数関数 z=f(x,y) の点 $(2,1,2\pi)$ での 1 次化 (接平面) はこれらの 2 直線で張られるの で, $\boxed{\mathbf{8}}$ となる。

(選択肢) ① $z-2\pi=\pi(x-2)$ ① $z-2\pi=2\pi(x-2)$ ② $z+2\pi=\pi(x-2)$

- (3) $z 2\pi = 2\pi(y 1)$ (4) $z 2\pi = 4\pi(y 1)$
- ⑤ $z 2\pi = \pi(x-2) + 2\pi(y-1)$ ⑥ $z 2\pi = \pi(x-2) + 4\pi(y-1)$
- (7) $z 2\pi = 2\pi(x-2) + 2\pi(y-1)$ (8) $z 2\pi = 2\pi(x-2) + 4\pi(y-1)$
- $9 z + 2\pi = \pi(x-2) + 4\pi(y-1)$

(4) $\sinh x$ の定義式は $\boxed{9}$ であり, $\cosh x$ の定義式は $\boxed{10}$ であるので, $\int_{0}^{1} \sinh x \cdot \cosh 2x dx = \boxed{11}$ となる.

(選択肢) ⑥ $\frac{e^x+e^{-x}}{2}$ ① $\frac{e^x+e^{-x}}{-2}$ ② $\frac{e^x-e^{-x}}{2}$ ③ $\frac{e^x-e^{-x}}{-2}$ ④ $\frac{\cosh 3+3\cosh 1-4}{6}$ ⑤ $\frac{\cosh 3+3\cosh 1-4}{-6}$ ⑥ $\frac{\cosh 3+3\cosh 1+2}{6}$ ⑥ $\frac{\cosh 3+3\cosh 1+2}{6}$ ⑨ $\frac{\cosh 3-3\cosh 1+2}{-6}$

- (5) $\int_{-\infty}^{\sqrt{3}} \arctan x dx$ を部分積分を使って計算すると $\boxed{12}$ となる (ただし, 下の 選択肢において対数は自然対数とする).

(選択肢) ① ① ① 1 ② $\log \left| \frac{\sin \sqrt{3}}{\sin 1} \right|$ ③ $\log \left| \frac{\tan \sqrt{3}}{\tan 1} \right|$ ④ $\frac{1}{\sin^2 1} - \frac{1}{\sin^2 \sqrt{3}}$

- (5) $\frac{1}{\tan^2 1} \frac{1}{\tan^2 \sqrt{3}}$ (6) $\left(\frac{\sqrt{3}}{3} + \frac{1}{4}\right)\pi + \frac{1}{2}\log 2$ (7) $\left(\frac{\sqrt{3}}{3} + \frac{1}{4}\right)\pi \frac{1}{2}\log 2$
- (8) $\left(\frac{\sqrt{3}}{3} \frac{1}{4}\right)\pi \frac{1}{2}\log 2$ (9) $\left(\frac{\sqrt{3}}{3} \frac{1}{4}\right)\pi + \frac{1}{2}\log 2$
- (6) 二重積分 $\iint_{\Sigma} (x+2y)dxdy \ (D=\{2x+y\leq 2,x\geq 0,y\geq 0\})$ を計算する. この二重積分を累次積分に書き換えると 13 となるので、この二重積分の値は 14 となる.

(選択肢) ① $\int_{-1}^{2} \left(\int_{0}^{1-\frac{y}{2}} (x+2y) dx \right) dy$ ① $\int_{0}^{1} \left(\int_{0}^{2-2x} (x+2y) dy \right) dx$

(7) $z=(1+\sqrt{3}i)^5$ とするとき, |z|= 15 であり, z を極形式で表すと, 15 × 16 となる. ただし, |z| は z の絶対値とする.

(選択肢) ① 1 ① 4 ② 16 ③ 32 ④ 64 ⑤ $\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}$ ⑥ $\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6}$ ⑦ $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$ ⑧ $\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}$ ⑨ $\cos \frac{5\pi}{3} + i \sin \frac{5\pi}{3}$

(8) 行列 $A=\begin{bmatrix} 1 & -4 & 3 \\ -3 & 5 & -1 \end{bmatrix}$, $B=\begin{bmatrix} 1 & 0 \\ 3 & -2 \\ -3 & -1 \end{bmatrix}$ 対して , 積 AB の (1,2) 成分は $\boxed{17}$ となる.

(9) 行列 $A = \begin{bmatrix} \frac{1}{3} & -\frac{2}{3} & \alpha \\ \beta & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix}$ に対して, ${}^tA = A^{-1}$ が成り立っているとする. このとき, $\alpha = \begin{bmatrix} \mathbf{18} \end{bmatrix}$, $\beta = \begin{bmatrix} \mathbf{19} \end{bmatrix}$ である.また, $|A| = \begin{bmatrix} \mathbf{20} \end{bmatrix}$ である.ただし, tA は A の転置行列, A^{-1} は A の逆行列とする.

(10) 行列 $A=\begin{bmatrix}1&2\\2&1\end{bmatrix}$ の固有値を計算する. I を単位行列とするとき、固有方程式 $|\lambda I-A|=0$ を解くと、A の固有値は -1 と21 であり,-1 に対する固有ベクトルは22 の定数倍で表される.