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Abstract. A new high-temperature lead-free solder joint which withstands up to 300°C utilizing
superplasticity in the Al-Zn eutectoid alloy has been developed to realize SiC power semiconductor
devices. The new solid state joining process consists of interfacial cleaning of joints utilizing
superplasticity of the Al-Zn-eutectoid alloy at 250°C followed by diffusion bonding between 350 and
390°C. The bonding strength of the new joints exhibits almost the same value at the temperature
range from RT to 300°C, above which it decreases slightly with increasing temperature. It is also
found that the bonding strength of the new joints is 8 times as high as those of a high-temperature
Pb-5wt%Sn-1.5wt%Ag solder and the Al-Zn eutectoid alloy solder without utilizing superplasticity at
250°C. The Al-Zn eutectoid alloy solder joint has shown high reliability in the temperature cycle
testing between 50°C and 300°C up to 300 cycles.

Introduction

Much attention has been paid to green power devices to prevent carbon dioxide exhausted from
automobiles and industrial equipment [1-3]. In these vehicles and equipment, electrical inverters
which convert from direct current (DC) to three-phase alternating current (AC) are necessary [4]. The
inverters are required for small sized, light weight and highly reliable, and hence their power density
becomes very high, leading to the necessity of high-temperature operation of power devices [5]. The
next generation power devices using SiC can be applicable for a high-temperature usage from 200 to
400°C.

Figurel shows an example of a schematic representation of SiC MOSFET. High-temperature SiC
MOSFET is bonded to a heat dissipation Cu plate through insulating plate by using high-temperature
solders. The SiC MOSFET is also connected to an external terminal by aluminum wire bonding
technology. These devices are molded with heat resistant resin. However, difficulties for the
realization of high-temperature operation of SiC power devices are mainly due to the fact that
excellent high-temperature Pb free solders have not yet been developed.

For lead free high-temperature solders, Bi-2.5wt%Ag, Au-20wt%Sn, Sn-91wt%Zn, Sn-3.5wt%Ag
and Sn-0.7wt% Cu eutectic solders have been developed [6-12]. Usable temperatures for these solder
joints are not so high i.e.,Jower than 200°C. On the other hand, an Al-95wt%Zn alloy with eutectic
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composition having a melting temperature of l
380°C has
high-temperature lead free solder [2-4].
compositions and hence
molten solders and solid state metallization
during soldering process are inhomogeneous and
very fast in some parts of joints, which leads to
the non-uniform formation of many kinds of
intermetallic
resulting in the formation of brittle joints.

To prevent the occurrence of voids and thick

intermetallic compounds, it will be a most

High-heat-resistant
Resin ,

been developed as a
solders have eutectic
. External
reactions between  terminat™

Heat Dissipation Cu Plate

SiC Device

Cu Electrode

compounds and voids,

Figure 1 A Schematic representation of MOS Power Device

High-temperature Solder
Insulating Plate {SiN}

High-temperature Solder

700 : : : :
promising method to use solid state bonding. S Eutectoid Al-7BwthZn
However, the drawback in the solid state 6009 . T-|(Superplasticity) s
bonding is mainly based on the necessity of a “‘MNM ) "”'”wml
very high press stress and very long holding 3‘2 o1 e
time at peak temperature to remove interfacial 5 4001 (AD BT
oxide layers by mutual deformation between g rm— \;
the bonding layers so as not to form voids § 39 - < 2]9C “
during joining. This process often results in . 2004 . Super Plasticity | | -

deformations of samples or / (2s50°c) f
semiconductor chip damages in the case of 1007 / "
semiconductors  and 0 / : ; : :i%w\x: i
0 20 40 60 80 100
Zn (wt%)

Figure 2 Phase Diagram of an Al-Zn Alloy

Joining Concept of Utilizing Superplasticity in Al-Zn Eutectoid Alloy

We have developed a new solid state bonding technology utilizing superplasticity in a
Al-78wt%Zn alloys [13,14] for the first time. As shown in Fig.2, there are eutectic composition
(95wt%Zn) and eutectoid composition (78wt%Zn) in an Al-Zn binary phase diagram [15]. It is well
known that the Al-Zn alloy with eutectoid composition (78wt%Zn) exhibits superplasticity typically
at around 250°C[13,14]. In addition, melting point of the alloy is 430°C, which is thought to be high
enough for the devices.

Our challenge is to develop a new solid state bonding technologyutilizing superplasticity in the
Al-Zn eutectoid alloy so as not to form voids in the joints through cleaning up of the interfaces by the
superplastic deformation and filling of the eutectoid Al-Zn solders into all parts of bonding interfaces
even if the press stress is low and holding time is short at peak temperature. The process is followed
by successive diffusion bonding at 350-390°C.
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Figure 3 Bonding process with utilizing superplasticity of Al-78wt%Zn alloy solder

Figure 3 shows a schematic representation of the bonding process utilizing superplasticity in the
Al-78wt%Zn solder. The Spm thick Ni films and 10pm thick Cu films were electrodeposited on to Cu
substrates in this order as shown in Fig.3 (a). After the electro-deposition, samples were annealed in a
mixed gas of Ar+3 % H,. As shown in Fig.3 (b), the Al-78wt%Zn solders of 200-300um in thickness
were set between Cu/Ni/Cu plates and they were at first heated up to 250°C and kept for 10min at the
temperature to draw cleaning up phenomena of bonding interfaces by the superplastic deformation of
the Al-78wt%Zn alloy solder under low press stress of 10MPa in the same Ar+3%H, atmosphere.
After that they were also heated up to 350-390°C and kept for 5min in the Ar+3%H, atmosphere
under the same press stress of 10MPa to enhance interfacial diffusion between the Al-78wt%Zn alloy
solder and Cu films as shown in Fig.3 (c).

The melting point of this alloy solder is 430°C, and hence the joints is expected to withstand up to
400°C use. As this alloy solder exhibits superplasticity at around 250°C, it easily deforms with low
press stress of 10MPa and cleans up the mutual bonding interface, which will enhance interfacial
diffusion in the next diffusion bonding process at 350°C-390°C, leading to firm bonding with much
less voids. The successive joining between SiC power devices and Cu plated SiN substrates utilizing
the Al-78wt%Zn superplasticity solders has been done under the same condition (see Fig.1).

Figure 4 shows a schematic representation of the bonding process without utilizing superplasticity
in the Al-78wt%Zn solder. In this process, samples were heated directly to 350-390°C. In this
temperature range, an initial equi-axial and fine-grained polycrystalline microstructure, which is an
origin of the occurrence of superplasticity in the alloy, transforms into a polycrystalline o’phase
having a large grain size which cannot show superplasticity.
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Figure 4 Bonding process without utilizing superplasticity of
Al—T78wt%Zn alloy solder

Results and Discussion

f Diffusion Bonded Layer Diffusion Bonded Laver
0o without utilizing Superplasticity utilizing Superplasticity

Figure 5 shows SEM micrographs
joints bonded with the eutectoid
Al-78wt%Zn alloys with and without
utilizing superplasticity. Many voids are seen
for joints bonded with the alloy solder
without utilizing superplasticity, while few
voids are seen in the joints bonded with the
alloy solder with utilizing superplasticity. It

is also found that the thickness of the Cu | Bonding Conditions Voids Bonding Conditions
R . Ar-3H, Atmosphere Ar-3H; Atmosphere
plated film after the bonding was carried out | Pressstress: 103pa Press stress: 1OMPa
3%0°CxSmin 250°C xSmin+390°C xSmin

with utilizing superplasticity is less than

one-half of the bonds without utilizing Figure $ SEM Micrographs of Joints

superplasticity.

This means that superplastic deformation 80 i1 gALZ:l(Pres: Streis:Zﬂls'\"lPa) i‘ M 4
has cleaned the bonding interface, resulting 70, i;ﬁ'“Z"£{‘1§‘[§§ZS\_H‘ v n= j
in the enhancement of interfacial diffusion 5 | E_'__’ ______ e - ]
between e?lloy.solder and Cu plated film in % 60+ Utilizing Supmlasﬁm.tyr‘___: _)__:;8;-‘-..,~‘-\_\ 1
the next diffusion stage. We have confirmed Je'o 50 :_f}l_-_'/:ﬁ(_s_@}}})_}*_ -r\\ .
that the area percentage of voids for the € 40- ~f:-4: i
former was about 3-5%, while that for the g 0] .. - N :" ]
latter was less than 0.3%. This result has v Without utilizing superplasticity i
clearly shown that the bonding process 28 20+ )
utilizing superplastic deformation at 250°C 9 10- "igflTt‘mpiPhSO!dcr(Pl»Sn-;\g}_I
is quite useful to control the void formation. 0 B A

Figure 6 shows the comparison of the 0 50 100 150 200 250 300 350 400 450
shear strengths of the bonds formed with Temperature('C)

Soldering using the eutectoid Al-78wt%Zn Fig 6 Shear Strength of Joints as a Function of Temperature

solder with and without utilizing
superplasticity and that of a high-temperature Pb-5wt%Sn -1.5wt%Ag solder as a function of heating
temperature up to 400°C. Shear tests of the bonds were carried out as shown in Fig.7 after keeping the



486 ICSAM 2015

joints for 5min at each temperature. It is R — —
found that the strength of bonds formed ‘
with utilizing superplasticity is about the DD
same level from RT to 300°C, above
which it decreases slightly with
temperature. The strengths of bonds
formed by soldering with eutectoid Al-Zn
alloy without utilizing superplasticity and
by soldering with high-temperature
Pb-5wt%Sn -1.5wt% Ag solder became
very low at 200°C. These values are found
to be less than 1/8 of that of the bonds
formed by the new soldering process.
Figure 8 is SEM micrographs of
SiC/Al-Zn/Cu/SiN bonds after ®
temperature cycle test. Figure 7  Schematic illustration of equipment for measuring Shear strength of bonds
Fig.8 (a) shows an appearance of the bonds, while Fig.8 (b) shows a magnification of the Fig.8 (a).
We have confirmed that no degradation of both SiC and Al-Zn solder occurred after temperature cycle
tests between 50°Cand 300°C up to 300 cycles. From above results, we do believe that this new
eutectoid Al-Zn solder utilizing superplasticity will be a promising candidate as a lead free
high-temperature solder for high-temperature power devices.

Thermocouple for
measuring sample
temperaturs

Thermocouple for
Temperature Control

Al-Zn

x 300°C

Cu/SiN

- le 50°C

4min

)

igure 8 Cross-sectional SEM Micrographs after Temperature Cycle Tests
(300Cycle)

Summary

A new high-temperature Al-Zn lead-free soldering process utilizing superplasticity has been
developed to realize high performance SiC power devices. The new joining process consists of
interfacial cleaning of joints caused by the superplastic deformation of the Al-Zn-eutectoid alloy at
250°C and subsequent diffusion bonding at 350 to 390°C. The Al-Zn solder joint developed has been
proved to have a very high strength even at 300°C and high reliability in the temperature fluctuation
tests from 50°C to 300°C up to 300 cycles.
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We have clarified that the grain growth of Cu in very narrow Cu wires is reduced by the pinning effect of Fe(ClO) and Ti(ClO)
compounds at a grain boundary based on results of a nano-order-analysis of aberration-corrected scanning transmission electron
microscope (Cs-corrected STEM) observations and an ab initio calculation. From the calculation, we estimated the segregation energy
for the Fe(ClO) and Ti(ClO) compound impurities at the Cu grain boundary. Combining the ab initio calculation and measurement
results, we proposed a pinning mechanism to suppress the grain boundary movement.
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Incoherent structures in materials, such as crystal surfaces, in-
terfaces, dislocations and vacancies, have their own unique electronic
structure resulting from broken periodicity and segregation of dopants
and impurities. The segregated atoms reduce the movement of a grain
boundary by the pinning effect,' and play a crucial role in determining
material properties by controlling grain growth. Therefore, control-
ling grain boundary structure is very important to precisely control
material properties.” In Cu wiring, it has been proved experimentally
that impurities such as S and Cl affect the properties of plated Cu films
by reducing the grain growth during annealing.? Hence, it is very im-
portant to clarify the place where impurities exist in Cu interconnects.
Barnes et al.* used time-of-flight secondary ion mass spectrometer
(TOF-SIMS) measurements to show that impurities segregate in Cu
films. As indirect verification, we have clarified that the Cu grain size
is enlarged uniformly by the plating process with a very-high-purity
electrolyte and anode; this is because the process avoids impurity seg-
regation at grain boundaries.” However, decisive evidence that shows
ClI atoms exist at grain boundaries has not been shown yet.

If we can clarify the kinds of impurities and the role of impurities
in the grain growth process during annealing, we can control grain size
distributions by removal of the harmful impurities from electroplating
materials leading to the realization of very low resistivity and high
electro-migration resistant Cu wires for future high speed and low
electric power consumption large scale integrations (LSIs). Therefore,
nano-scale analysis of the segregated elements at the grain boundary
and an understanding of the segregation mechanism are indispensable.

Previously, we directly observed the impurities and precipitates at
the grain boundary and in the grains of Cu polycrystal wires buried in a
trench using aberration-corrected scanning transmission electron mi-
croscopy (C,-corrected STEM).® We found that Cl was concentrated
at the grain boundary, while O and C were observed both at the grain
boundary and in the grains. The results of C,-corrected STEM indicate
the possibility of controlling the impurities at the grain boundary on a
nano-scale, which will lead to realization of high performance LSIs.

These findings will encourage innovative advancement of the elec-
trodeposition process for fabrication of very narrow Cu wires under
30 nm width; however, the question whether or not such light im-
purities can exist at grain boundaries for a long time and reduce the
movement of Cu grain boundaries during isothermal annealing is still
unanswered. In the present study, we investigated elements at the grain
boundaries by a nano-order-analysis of C-corrected STEM observa-
tions and found that metallic atoms of Fe and Ti exist together with CI
and O. We used an ab initio calculation to clarify that the grain growth
of Cu in very narrow Cu wires can be reduced by the pinning effect
of Fe(ClO) or Ti(ClO) compounds formed at grain boundaries. This
means that metallic atoms like Fe and Ti play a bigger role in control-

“E-mail: takatoshi.nagano.rx78-02 @vc.ibaraki.ac.jp

ling grain growth than CI only. This result suggests the measure that
we should adopt to get uniform grain growth.

Measurement and Calculation Methods

STEM method.— For the C,-corrected STEM observations, we
produced a Cu wire structure as follows. Trenches in a four-point
probe geometry of 80-100 nm width, with 200 nm height and 1 mm
length, and four 200 pm square pads with 200 nm height each were
patterned in silicon dioxide dielectric films using electron beam lithog-
raphy and reactive ion etching. Ultrathin TaN/Ta (TaN: 7.5 nm; Ta: 7.5
nm) and a 50 nm seed layer were sputter-deposited on the trenches.
After that, an 8 inch wafer was cut into 10 mm square chips for the
electroplating. Cu electroplating was done on the 10 nm square chip
cathode set on the rotating electrode (1000 rpm) in a 0.2 dm? elec-
troplating bath kept at 298 K. The plating solution contained 0.631
mol/dm?® CuSO, - 5H,0, 0.105 mol/dm® H,SOy4, and 50 ppm HCI. The
required organic accelerator, organic suppressor and organic leveler
were also added to the plating solution. The purity of the Cu anode was
8N and the applied DC current was 5 mA/cm?”. The dc plating time
was 110 s, and the thickness of the electroplated layer was 200 nm.
After electroplating, the substrate was annealed at 573 K for 0.5 h in
a vacuum atmosphere of 6.6 x 10~* Pa to expedite recrystallization
using rapid thermal annealing (RTA). After RTA, the substrate was
given a chemical mechanical polishing (CMP) to remove the excess
Cu and TaN/Ta layers from the trenches. The detailed conditions of
the electroplating and obtained Cu wire structure can be found in Ref-
erence 6. A thin slice was cut from the Cu wire by the micro sampling
method, and C;-corrected STEM analysis in the cross-sectional direc-
tion of 80-100 nm wide Cu wires was done using the Cs-corrected
STEM (Hitachi HD-2700), equipped with an EDX (energy dispersive
X-ray spectroscopy) analyzer, and operated at 200 kV. The analyzed
region was a cylindrical shape with 4 nm diameter and 70 nm height.

Calculation method.— We performed an ab initio calculation with
the Vienna ab initio simulation package code (VASP 4.6).” In the
VASP program, the Kohn—-Sham equations are solved with a gen-
eralized gradient approximation proposed by Perdew and Wang'’
and Perdew et al.!' and the projector-augmented wave approach
(PAW).'213 The PAW potential for Cu, Fe, Ti, Cl and O were
respectively constructed by treating the (3p)®(3d)'°(4s),!(3d)’(4s),'
(3d)*(4s),' (25)>(2p)° and (2s)*(2p)? as valence states.

We constructed the Cu interface model of a prismatic (X = 13b)
grain boundary model with periodic boundaries (two oppositely di-
rected grain boundaries in the model) and a total of 220 Cu atoms
in the supercell with dimensions of 17.3 x 11.7 x 12.5 A3, We fo-
cused on the unstable interface in the (111) oriented slab where grain
growth easily occurs in order to evaluate the effect of segregation.'*

_10_The supercell size for the present study was large enough to
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with an energy cutoff of 700 eV and k-points meshing (2 x 2 x 2)
in the Monkhorst k-points scheme. The optimization procedure was
converged to the 0.005 eV tolerance limit.

For the X 13b structure frequently observed in the (111) interface of
Cu polycrystals, we estimated the tendency for segregation using the



ECS Electrochemistry Letters, 4 (11) D35-D39 (2015) D37

(&)

X1500000

o 15.6at%

Intensity (arbitrary units)

10.00 1100 keV

Energy of X-ray (keV)

Figure 2. (a) Dark field image of precipitate at the triple junction of grain
boundaries. (b) EDX analysis of the precipitate (at the point 1-111 in (a)).

ab initio calculation. We took symmetry into account and examined
three kinds of segregation sites for impurity atoms (Fe, Ti, ClI and
0), one interstitial site and two substitutional sites, using the VASP
package including structural optimization.”!'!

We calculated the stable structure with the segregated compounds
at the Cu grain boundary as shown in Figure 3. The structure
was optimized by the VASP with the convergence condition of the
0.005 eV tolerance limit.

In order to compare the segregation tendency between isolated
impurity atoms and compounds at the Cu grain boundary, we de-
fined segregation energy as the energy difference of the two sta-
ble arrangements, i.e., in the intergranular region and at the grain
boundary, as

Esegregation = Einterface - Eintergranulur [1]

where Eierace 18 the total energy of the three systems with segregated
impurity atom or the total energy of the system with a segregated com-
pound at the Cu grain boundary, and E;,crgranuiar 1S the total energy
of each system with segregated impurity atoms in the intergranular
region of the Cu crystal, such as

Elntergranular = ECu X NCu + AE‘Impuriz‘y X Nlmpurity [2]

where E¢, is the cohesive energy per atom of the bulk Cu, N¢, is the
number of Cu atoms in the grain boundary model, AE,,puriry is the
energy difference between a Cu atom in the bulk and in the crystal in
which a Cu atom is replaced by an impurity atom, and Ny,puriry is the
number of the impurity atoms.

The smaller the segregation energy value, the more frequently
segregation occurs at the grain boundary.

Figure 3. Optimized structures of Cu(111) X13b boundaries with isolated
impurities (a) Fe, (b) Ti, (c) Cl, and (d) O; and compounds (e) FeO, (f) TiO,
(g) Fe(ClO) and (h) Ti(ClO).

Results and Discussion

STEM results.— Cross-sectional microstructures of Cu wire as
observed by C,-corrected STEM are shown in Figure la. It is seen
that Cu interconnect consists of various grain sizes from about 40 to
160 nm. Next, we analyzed the atomic concentration at 33 points on
a grain boundary and 1 point within a grain. Figure la also shows
a part of the analyzed grain boundary points (1-8 to 1-17, and 1-
19 to 1-22) and the point within a grain (1-18). Figure 1b shows
the atomic concentration of the detected impurities at the analyzed
points. It should be noted that the gray horizontal lines indicate the
concentration of the atoms in the grain, i.e. at the point 1-18. We
clearly find that CI, Fe and Ti are concentrated at the grain boundaries,
O is enriched both in the grain and at the grain boundary, while Zn
and Ta are not enriched for either of them. The estimated atomic
concentrations are up to 30 at % O, 3.5 at % C1, 0.7 at % Fe, 0.7 at %
Ti, 0.7 at % Zn, 2.5 at % Ta.

Next we investigated how these impurities can exist both in the
grain and at the grain boundaries by C;-corrected STEM. Figure 2a
shows a dark field image at magnification x 1,500,000. The dark field
image is called the Z-contrast image (Z denotes atomic number). Pre-
cipitates of 3—-10 nm diameter are observed at the grain boundaries
(marked as 1-109 and 1-110) and the triple junction of grain bound-
aries (marked as 1-111) discontinuously. Figure 2b shows EDX anal-
ysis of the precipitate at 1-111. Fe, Cl, and O impurities are found.
Two reasons why the quantity of impurities is quite small are as

_12_follows.
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Table I. Calculated segregation energies of isolated impurities and
compounds consisting of Fe, Ti, Cl and O at the Cu grain boundary.

Species Segregation energy (eV)
Fe —5.54
Ti —7.42
Cl 6.42
O —6.62
FeO —17.10
TiO —19.74
Clo —491
FeCl —3.13
TiCl —4.63
Fe(ClO) —15.80
Ti(ClO) —16.24

1. The EDX analytical volume is a cylindrical shape with a 4 nm
diameter and 70 nm height, which is much larger than the precip-
itate sizes. These precipitates are considerably dispersed along
the depth direction of the grain boundaries as estimated from the
plain view (Figure 2a). This leads to lower impurity concentra-
tions than those of the case of uniform precipitation. We think that
various compounds exist with many Cu atoms at the boundary
regions.We did.

2. Impurity concentration of Cu films has been found in glow dis-
charge mass spectrometry (GDMS) measurements to be at the
ppm level;'¢ this is reasonable because plating was done using
high-purity 6N electrolyte. Therefore segregation of the impurity
does not occur so frequently. We confirm by the calculation, how-

(a) (b)

1)
Oci
Fe /
@)
Fe cl
0]
GB
() G))
O
FeO c
ClOo
FeCIO o

Figure 4. Proposed mechanism of grain boundary (GB) pinning.

ever, that the isolated clusters show the strong boundary-pinning
effect.

The concentrations of impurities segregated at the grain boundaries
cannot be measured by GDMS because this analysis technique is
applied to the whole specimen. In the present study, we have made
the first successful measurement of the concentrations of segregated
impurities in a wire by utilizing Cs-corrected STEM.

Calculation results.— The optimized structures can be seen in
Figure 3 for the isolated impurities and the compounds. The calcu-
lated segregation energies of each isolated impurity atom and each
segregated compound at the Cu grain boundary are shown in Table I.
We can see that Fe, Ti and O prefer to be at the Cu grain boundary
rather than within the grain, while Cl prefers to be in the Cu grain
rather than at the grain boundary. However, the CIO group, which
can be produced from the plating solution, tends to be at the grain
boundary. The segregation energy of the system with the compound
FeO, TiO, Fe(CIO) or Ti(ClO) at the Cu grain boundary shows a big-
ger preference for segregation than the isolated impurities at the grain
boundary.

Proposed pinning mechanism.— Combining the ab initio calcula-
tion and measurement results, we proposed the pinning mechanism
which can explain the phenomenon that the grain growth of Cu grains
is reduced in very narrow Cu wires in the case that a metal atom is Fe
as follows (see Figure 4).

(a) Cl atoms are mainly located in Cu grains, while Fe and O atoms
are at the grain boundary. Annealing causes movement of the
grain boundaries. A Fe atom pins the movement of the Cu grain

(Various

Intermingled state

atoms and clusters like FeClO,
FeO and CIO, etc.) in bulk Cu

atoms

-13-
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boundary because a high energy loss occurs when Fe atoms are
in a Cu grain. For the boundary movement with impurities such
as Fe atoms, an exchange between a Cu atom in the grain and
the impurity atom at the grain boundary is required.

The Cl atoms combine with O atoms to form CIO groups at the
grain boundary. The free O atoms and ClO groups diffuse with
high mobility along grain boundaries and finally meet Fe atoms
at the pinned grain boundary.

The O atoms and CIO groups combine with Fe atoms to form
FeO and Fe(ClO) at the pinned grain boundary. FeO and Fe(ClO)
compounds pin the grain boundary more strongly than the iso-
lated Fe atoms.

Grain boundaries accumulate around the Fe(ClO) compounds.
Then the Fe(C10) compounds move along the accumulated grain
boundaries and aggregate to form Fe(ClO) clusters. Finally,
Fe(ClO) clusters remain at the triple junction of the grain bound-
aries, or at an individual grain boundary. FeO and CIO clusters
remain also at grain boundaries.

(b)

(c)

(d)

Our findings show that metallic atoms like Fe and Ti play a bigger
role in controlling grain growth than Cl only. The mechanism proposed
here provides the measure that should be adopted to achieve uniform
grain growth.

Summary

We clarified that the grain growth of Cu in very narrow Cu wires
was reduced by the pinning effect of Fe(ClO) and Ti(ClO) compounds
at the grain boundary based on the results from the nano-order-analysis
of Cy-corrected STEM observations and the ab initio calculation. We
made nano-order observations of a very narrow Cu wire using C-
corrected STEM and detected Fe, Ti, Cl and O atoms at the grain
boundaries including triple junctions. Using the ab initio calculation

-14-
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results, we estimated the segregation energy for atom impurities and
compounds at the Cu grain boundary and confirmed the origin of the
pinning effect in Fe, Ti elements and their compounds. Combining
the ab initio calculation and measurement results, we proposed the
pinning mechanism.
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A high—throughput analysis of thermophysical properties suitable for thermoelectric materials
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1. Abstract

We have used a molecular dynamics technique to
simulate the relationship between nano—cluster
precipitation and thermal conductivity in Si/Ge
amorphous multi-layer films, with and without Cu
addition. In the study, the Green—-Kubo equation was
used to calculate thermal conductivity in these
materials. Five specimens were prepared: Si/Ge
layers, Si/(Ge+Cu) layers, (Si+Cu)/(Ge+Cu) layers,
Si/Cu/Ge/Cu layers and Si/Cu/Ge layers. The
number of precipitated nano—clusters in these
specimens, which is defined as the number of
four—coordination atoms, was counted along the lateral
direction of the specimens.  The observed results of
precipitate formation were considered in relation to the
thermal conductivity results. Enhancement of
precipitation of nano—clusters by Cu addition, i.e.,
densification of four—coordination atoms, can prevent
the increment of thermal conductivity. Cu dopant
increases the thermal conductivity of these materials.
Combining these two points, we concluded that
Si/Cu/Ge is the best structure to improve the
conversion efficiency of the Si/Ge amorphous

multi-layer films.

2. Introduction

Electricity is an important types of energy. It can
be generated from many other primary sources, e.g.
steam, oil, coal, wind, sunlight and nuclear reactions.
However, sources like coal and oil are not good for the
environment as they emit much carbon dioxide when
burned, and they also will be depleted in the future.
Other sources like wind and sunlight do not produce
much energy on a steady basis. These problems have
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led us to the consideration and use of renewable and
sustainable energy sources.

People in Japan have become even more interested
in renewable and sustainable energy techniques after
their experiences in the summer months following the
massive  earthquake and tsunami that struck
northeastern Japan in March 2011 and led to the
Fukushima nuclear accident, when the government
implemented various energy saving measures to
compensate for the loss of nuclear power—generated
electricity. These  techniques  should be
environmentally conscious. Using thermoelectric
materials is one of the energy saving technique.
Approximately 90% of the world’s electricity is
generated by heat energy, typically operating at 30% —
40% efficiency, thus losing massive amounts of energy
in the form of heat released to the environment [1].
Therefore, extracting energy from waste heat by using
thermoelectric materials is a promising approach.

Thermoelectric materials are materials that can
transfer heat into energy [2-4]. These materials
produced electricity from heat using the Seebeck effect.
This is a phenomenon in which that uses a temperature
difference between two dissimilar electrical conductors
or semiconductors to produce a voltage difference
between two substances [5, 6]. Efficiency of these
materials depends on the figure of merit ZT,

2

ZT = %T , (1)

where 7, a, p and « are the absolute temperature,
Seebeck coefficient, electrical resistivity, and thermal
conductivity, respectively. Silicon — germanium alloys
are currently the best thermoelectric materials around
1000 K. Usability of Si—Ge alloys is, however, limited

by their high price and their ZT is also only in the
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mid-range.

High thermoelectric power (Seebeck coefficient)
has been found when recrystallization of nanocrystals
occurs in a thin film. Nanocrystals that formed in the
thin films are believed to be the effect of the
metal-induced crystallization (MIC) of the dopant
metals. MIC is a phenomenon whereby dopant metal
atoms lower the recrystallization temperature of an
amorphous semiconductor [7]. This suggests that
superior thermoelectric properties will arise from the
nanocrystals in the amorphous matrix [8, 9].

Unfortunately, in the experiment conducted by
Takiguchi et al. [8], when they attempted to make a
Si/(Ge+B) superlattice thin film, there was no sign of
the MIC effect. In fact, high thermoelectric power ( >
1 mVK™) was observed in the superlattice thin film
only when nanocrystals with a diameter less than 10 nm
were present; however, limitations of the specimen
preparation system and the use of B as the dopant
made it difficult to prepare specimens with a precisely
controlled nanostructure.

In our previous work [10], four specimens were
prepared studied by a molecular dynamics (MD)
simulation technique. Specimens with Cu addition to
the Si or Ge layer showed a low number of
nano—clusters that were defined by the number of
four—coordination atoms. However, if a thin Cu layer
of Cu was present at the interfaces of Si and Ge, it
enhanced the precipitation of the four—coordination
atoms. Thus we proposed that, by controlling the Cu
impurity addition and the way Cu was placed in the
system we could control the precipitation of
nano—clusters and improve the thermoelectric
performance.

In this paper, we report further understanding on
the relationship between the nano—cluster
precipitations and the thermal conductivity of the
Si/Ge amorphous multilayer films with Cu addition.
The MD simulation technique was used to obtain a
meta—stable structure of the specimens. The
Green—Kubo equation was applied to calculate the
thermal conductivity of the specimens. The simulation
results for the precipitated nano—clusters, which are
represented by four—coordination atoms, and the

results of thermal conductivity were analyzed.

3. Simulation Technique

3.1 Simulation Details

In this study, we used the MD simulation technique
which calculates individual movements of atoms and
molecules. The trajectories of atoms and molecules are
determined by numerically solving Newton’s equations
of motion for a system of interacting particles, where
forces between the particles and potential energy are
defined by molecular mechanics force fields. This
technique is also well suited to describe materials at
the atomic scale [9, 11, 12]. In the MD technique, the
position of the 7 — th atom, A, is calculated by the
Newton equation.

An extended Tersoff potential was used to calculate
the interaction between atoms in this simulation. This
is one member of the family of potentials developed by
Tersoff [13], and based on the concept of bond order:
the strength of a bond between two atoms is not
constant, but depends on the local environment.
Moreover, this potential has been proven to be reliable,
and it is widely used recently. More information about
the extended Tersoff potential may be found in the
literature [14].

In this work we used the Green—Kubo equation to
calculate the thermal conductivity. The Green—Kubo
equation is one of several well-known approaches [15,
16] used to predict thermal conductivity in an
equilibrium MD simulation. In the equilibrium MD
simulation, the molecules are allowed to interact in the
absence of any perturbing field (e.g., a temperature
gradient). This equation also can be applied to crystals,
alloys, amorphous solids and fluids.

3.2 Specimen Details

In this work, we simulated five types of specimens:
four of them were similar to those used in our previous
paper [10] and they had multi-layers of Si/Ge,
Si/(Ge+Cu), (Si+Cu)/(Ge+Cu) and Si/Cu/Ge/Cu, and
the fifth type had multi-layers of Si/Cu/Ge, which we
thought was an important structure to consider. The
“+Cu” means that Cu atoms were added into the Si or
Ge layers as substitutional atoms and “/” indicates the
interface of the layers.

Specimen 1 contained only Si and Ge, described as
Si/Ge. In Specimen 2, we added Cu to only the Ge
layer at the ratio of Ge:Cu = 6:4, described as
Si/(Ge+Cu). In Specimen 3, we added 20 at% Cu to
both the Si and Ge layers,
(Si+Cu)/(Ge+Cu). In Specimens 4 and 5, we formed a
thin Cu layer. The former had a thin Cu layer at both
Si and Ge interfaces, described as Si/Cu/Ge/Cu. The
latter had a thin Cu layer at only the Si interface,

described as
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described as Si/Cu/Ge.

All five specimens contained the same numbers and
dimensions of the unit cell: ten cells (5.54 nm) in the
<100> and <010> directions. For numbers and
dimensions of the unit cell in the <001> direction,
Specimens 1, 2 and 3 contained the same numbers of
unit cell, which was six unit cells (3.33 nm), Specimen
4 had eight unit cells (4.43 nm), and Specimen 5 had
seven unit cells (3.88 nm). The lattice constant of the
unit cell was set to be the average of the lattice
constants of Si and Ge.

First, all five specimens were melted at a

temperature 5000 K. Then, we quenched them at 4.5 K.

After the multi-layered films became amorphous, we
tracked the location and velocity of every atom for the
thermal conductivity calculation. The amorphous
multi-layered films were next annealed at 1000 K.
After annealing, we once again tracked the location
and velocity of every atom for the thermal conductivity
calculation. The Verlet algorithm was used for the
calculation of atomic movement [17], while the discrete
time At was set as 0.3 fs. The book—keeping and
cell-index methods were used to reduce computing
time. The periodic boundary conditions were applied to
eliminate surface effect from the computation. Side
views of the final structure of the five types of
specimens from the [010] direction are shown in Fig. 1.

4. Results and Discussion

4.1 Cluster Distribution

We analyzed the cluster distribution. To do this,
first, a cluster was defined according to its number of
coordination atoms, which was four. The number of
four—coordination atoms was counted in every
specimen before and after annealing. Unlike in our
previous work [10], we considered that the number of
four—coordination atoms must be calculated at the
same stable temperature. Then, the number of
four—coordination atoms was counted at 300 K.

Fig. 2 shows the total number of four—coordination
atoms before and after annealing for every specimen.
From this, we can understand that, after annealing, all
specimens show a greater number of four—coordination
atoms. Specimen 5 shows the highest enhancement,
followed by Specimens 1, 4, 2 and 3.

After that, the distribution of the number of
four—coordination atoms was analyzed along the lateral
direction of the film, [010]. Along the sides in the
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(a)

Fig.1 Side views of the final structure (after annealing
process) of the five types of specimens from the [010]
direction. (a) Specimen 1: Si/Ge, (b) Specimen 2:
Si/(Ge+Cu) with Ge:Cu = 6:4, (c) Specimen 3:
(Si+Cu)/(GetCu), with 20at% Cu in both layers, (d)
Specimen 4: Si/Cu/Ge/Cu, and (e) Specimen b5:
Si/Cu/Ge. Green, red and yellow particles represent
Si, Ge and Cu atoms, respectively.

[100] and [001] directions, every specimen was
divided at a 0.2 nm interval, to create cells with a size
of 0.2 nm x 5.5 nm x 0.2 nm. After that, the number of
four—coordination atoms present inside the cell was
obtained. The analyzed results are shown in Fig. 3.
In this figure, the x axis is the number of layers in the
[100] direction of every specimen, while the y axis is
the number of layers in the [001] direction. The
number of four—coordination atom is presented by the
color contour which represents the density of
four—coordination atoms inside every cell.

For Specimen 1 (Fig. 3(a)), when we compare the
distribution of the number of four—coordination atom
before and after annealing, they are uniformly found in
the Si and Ge layers. When Cu dopant atoms were
added to the Ge layer or both Si and Ge layers as in
Specimens 2 and 3, the four—coordination atoms were
precipitated only in the Cu—free region (the upper
region of Figs. 3(b) (1) and (2)). We consider that
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Fig. 2 Total number of precipitated four — coordination
atoms in each specimen.
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Fig. 3 Distribution of four—coordination in every
specimen in [010] direction (xz surface). (a) Specimen

1: Si/Ge. (1) Before annealing and (2) after annealing.

this behavior might be due to the fact that the Cu
had stabilized the structures of the Si and Ge layers
Therefore, Cu had blocked the
precipitation of four—coordination atoms in the layer

in Specimens 2 and 3.

where it was doped.
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Fig. 3 Distribution of four—coordination
specimen in [010] direction (xz surface). (b) Specimen
2: Si/(Ge+Cu).
annealing.

in every

(1) Before annealing and (2) after

However, in Specimen 2, the density of precipitation
of four—coordination atoms in the Si layer, i.e., the
Cu—free layer, is higher compared to that of Specimen
1. Specimens 4 and 5, in which a thin Cu layer was
inserted between the Si and Ge layers, also show the
Both
Specimens 4 and 5 show enhancement of the number of

same behavior as the Si layer in Specimen 2.

the four—coordination atoms in both Si and Ge layers.
Moreover, Specimen 5 shows a greater enhancement of
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the total number of four—coordination atoms than
Specimen 1. Therefore, the Cu dopant and thin Cu
layer can enhance precipitation and increase the
density of four—coordination atoms in the Cu—free
layers of Si and Ge.
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Fig. 3 Distribution of four—coordination in every
specimen in [010] direction (xz surface). (c) Specimen
3: (Si+Cu)/(Ge+Cu) , (d) Specimen 4: Si/Cu/Ge/Cu,
(e) Specimen 5: Si/Cu/Ge. (1) Before annealing and (2)
after annealing.
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4.2 Thermal Conductivity

We calculated thermal conductivity using the
Green—Kubo equation. For all specimens, thermal
conductivity was calculated at 300 K for 3 ps. The
thermal conductivity results are shown in Fig. 4.

From Fig. 4 we see that increasing the number of
four—coordination atoms does not always lower the
thermal conductivity. Specimens 1 and 5 show a
reduction of thermal conductivity after annealing, while
We have
found that the density of Cu also plays a crucial role in
The higher

the Cu density is, higher the wvalue of thermal

Specimens 2, 3 and 4 show an increment.
thermal conductivity of these materials.

conductivity. From this fact, we can consider that
the Cu atoms can easily transmit atomic vibrations in
these specimens. Comparing Specimens 2 and 3 for
the amorphous state, Specimen 2 has a much higher
This is
due to the higher density of Cu in the Ge layer in
Specimen 2 (20 at%) than in Specimen 3 (10 at%). In
addition, if a Cu—Cu bond is formed, this will also make

thermal conductivity value than Specimen 3.

the thermal conductivity value higher than for other
bonds.
Specimen 4 with Specimen 3 for the amorphous state.

This can be clearly seen when comparing

Thin Cu layers in Specimen 4 tend to transmit atomic
vibrations much more easily than the Si and Ge layers
This make the thermal
conductivity of Specimen 4 greater than that of

with added Cu in Specimen 3.

Specimen 3.
Thermal Conductivity
39
S¥Ge
Al S¥GerCu
Lk
2.8 S - S+ Cu/Ge+Cu
,,—"'--‘ 51'Cul/Ge/Cu
26 ®-

A SiCu/Ge

Thermal conductivity (WimK)
o
-
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a1
18
16
14
Before After
Annealing Annealing

Fig. 4 Results of thermal conductivity obtained using
the Green—Kubo equation. Specimen 1: Si/Ge,
Specimen 2: Si/(Ge+Cu), Specimen 3: (Si+Cu)/(Ge+Cu),
Si/Cu/Ge/Cu, and

Specimen 4: Specimen 5:

Si/Cu/Ge.

4.3 Relationship between Cluster Precipitation and

Thermal Conductivity

We showed that precipitation of four—coordination
atoms plays a crucial role in thermal conduction of the
studied materials. To understand the relationship
between precipitation of four—coordination atoms and
the thermal conductivity, first we summarize the
obtained results: (1) All specimens show enhancement
of the number of four—coordination atoms by annealing.
(2) Specimen 5 shows the highest enhancement in the
number of four—coordination atoms by annealing,
(3) Cu blocks
the precipitation of four—coordination atoms in the
(4) Cu dopant and the thin
Cu layer can enhance precipitation and increase the

followed by Specimens 1, 4, 2 and 3.
layer where it is doped.

density of four—coordination atoms in the Cu—free
layers of Si and Ge. (5) Specimens 1 and 5 show
reduction of thermal conductivity by annealing while
Specimens 2, 3 and 4 show its increment. (6) Cu
dopant increases the thermal conductivity of these
materials.

From these findings, we can make two main
considerations. First, increase of the number of
four—coordination atoms during annealing can lower the
thermal conductivity. This behavior can be clearly
seen in Specimens 1 and 5. Both of these specimens
have more four—coordination atoms and lower thermal
conductivity after the annealing. However, Specimens
2, 3 and 4 show the opposite behavior even when the
number of four—coordination atoms increases. This
phenomenon leads to the second consideration.

The second consideration is that a high density of
four—coordination atoms can prevent increment of
thermal conductivity and that the densification of the
four—coordination atoms occurs in the Cu-free region
We can see that Cu

blocked the precipitation of four—coordination atoms in

in the Cu-added specimens.
the layer where it is doped. In Specimen 2, for
example, almost no four—coordination atom can be
found in the (Ge+Cu) layer (compare Figs. 2(b) and
2(a)). However, in the Si layer (the lower region in
Fig. 2(b)), the number of four—coordination atom
increases, thus the density of four—coordination atom
In the (Ge+Cu) layer, the two
contradictory effects on the atomic vibrations exist.

increases in that layer.

Cu atoms themselves easily transmit the atomic

vibrations, whereas the nano—clusters with

four—coordination may trap them. In contrast, at the
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Si layer, the atomic vibrations may only be trapped by
four—coordination atoms because no Cu atoms exist in
this region. This makes the thermal conductivity of
Specimen 2 after annealing change less, while in
Specimen 3, the density of four—coordination atoms
after the annealing process increases the least among
all the specimens. This leads to a larger increment of
thermal conductivity than that of Specimen 2.
Moreover, Specimen 3 shows the largest increment
compared to all other specimens because the effect of
four—coordination atom is the smallest.

In Specimen 4, two layers of Cu were added. By
adding these layers, precipitation of four—coordination
atom was enhanced in both Si and Ge layers.
Nevertheless, this still cannot prevent the increment of
thermal conductivity after annealing because Cu
dopant atoms themselves have a positive effect for
increment of thermal conductivity. It should be noted
that the Cu atoms were confined in the form of a thin
layer in this specimen and many Cu—Cu bonds were
formed. However, if we insert just one thin layer of
Cu between the Si and Ge layers, like Specimen 5, this
decreases the increment of thermal conductivity
drastically. As can be seen in Fig. 3(e), one thin Cu
layer is just enough to enhance the precipitation of
four—coordination atoms. Accordingly the total
number of Cu atoms can be reduced to achieve the
structure with many four—coordination atoms. The
thermal conductivity is still higher than the Cu-—free
Specimen 1 but it is within a 30 % increase. In
addition, doping Cu in these materials can increase the
number of free electrons, thus lowering their electrical
resistivity. From the above considerations, we
conclude that Si/Cu/Ge is the best structure to
improve the conversion efficiency of the Si/Ge
amorphous multi—layer films.

5. Conclusions

In this paper, we examined the relationship between
the precipitations of four—coordination atoms and the
thermal conductivity of Si/Ge amorphous multi-layer
films by using molecular dynamics simulation. Five

specimens were examined: Si/Ge, Si/(Ge+Cu),
(Si+Cu)/(Ge+Cu), Si/Cu/Ge/Cu and Si/Cu/Ge.
From the analysis of the distribution of

four—coordination atoms and the thermal conductivity,
we clarified the following two competing effects: (1)
Increasing the number of four—coordination atoms by
annealing can reduce the thermal conductivity. (2) Cu
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dopant atoms themselves increase the thermal
conductivity of these materials. Combining these two
points, we concluded that Si/Cu/Ge is the best
structure to improve the conversion efficiency of Si/Ge
amorphous multi-layer films.
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